Discrete-Continuous Splitting for Weakly Supervised Learning
نویسندگان
چکیده
This paper introduces a novel algorithm for transductive inference in higher-order MRFs, where the unary energies are parameterized by a variable classifier. The considered task is posed as a joint optimization problem in the continuous classifier parameters and the discrete label variables. In contrast to prior approaches such as convex relaxations, we propose an advantageous decoupling of the objective function into discrete and continuous subproblems and a novel, efficient optimization method related to ADMM. This approach preserves integrality of the discrete label variables and guarantees global convergence to a critical point. We demonstrate the advantages of our approach in several experiments including video object segmentation on the DAVIS data set and interactive image segmentation.
منابع مشابه
Optimal Multiple Intervals Discretization of Continuous Attributes for Supervised Learning
5, av Pierre Mend&s-France 69676 BRON CEDEX FRANCE {zighed,rakotoma,ffeschet)@univ-lyon2.fr In this paper, we propose an extension of Fischer’s algorithm to compute the optimal discretization of a continuous variable in the context of supervised learning. Our algorithm is extremely performant since its only depends on the number of runs and not directly on the number of points of the sample dat...
متن کاملWeakly Supervised Classification of Objects in Images Using Soft Random Forests
The development of robust classification model is among the important issues in computer vision. This paper deals with weakly supervised learning that generalizes the supervised and semi-supervised learning. In weakly supervised learning training data are given as the priors of each class for each sample. We first propose a weakly supervised strategy for learning soft decision trees. Besides, t...
متن کاملA General Formulation for Safely Exploiting Weakly Supervised Data
Weakly supervised data is an important machine learning data to help improve learning performance. However, recent results indicate that machine learning techniques with the usage of weakly supervised data may sometimes cause performance degradation. Safely leveraging weakly supervised data is important, whereas there is only very limited effort, especially on a general formulation to help prov...
متن کاملSemi-supervised Learning for Mixed-Type Data via Formal Concept Analysis
• We propose a semi-supervised learning (SSL) method, called SELF (SEmi-supervised Learning via FCA), using Formal Concept Analysis (FCA) – It can handle mixed-type data containing both discrete and continuous variables ∘ Numerical data are discretized by binary encoding / Summary • We propose a semi-supervised learning (SSL) method, called SELF (SEmi-supervised Learning via FCA), using Form...
متن کاملBayesian Image Segmentation Using Gaussian Field Priors
The goal of segmentation is to partition an image into a finite set of regions, homogeneous in some (e.g., statistical) sense, thus being an intrinsically discrete problem. Bayesian approaches to segmentation use priors to impose spatial coherence; the discrete nature of segmentation demands priors defined on discrete-valued fields, thus leading to difficult combinatorial problems. This paper p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.05020 شماره
صفحات -
تاریخ انتشار 2017